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Abstract

The authors present the detailed theory and the new results associated with the triple quantum (TQ) nutation and the line

narrowing effect of the TQ resonance in the two-level NMR system which we reported previously. The TQ resonance is induced in

the spin-locked system by the oscillating field produced by the sinusoidal phase modulation (PM) of the RF field. The theory

predicts that the TQ nutation is accompanied by several higher frequency oscillations and we detected them experimentally by

improving the detection system. These higher frequency oscillations are due to the fluctuation of the angle between the transverse or

effective field causing the TQ nutation and the RF field. We obtain the result that the modulation index 2um of the PM is the key

parameter that essentially controls the conditions of the TQ resonance and the narrowing effect. Under the exact TQ resonance, the

ratio of the TQ resonance frequency to the Larmor frequency of the RF field depends only on um, and the secular part of the

magnetic dipole Hamiltonian of a like spin system in the triply rotating frame disappears at a particular value of um. The condition

is different from that of the well-known magic angle condition.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The development of line narrowing method is one of

the subjects of study which has been attracting large

interest in solid NMR. So far, various artificial line

narrowing phenomena have been reported, such as

magic angle nutation [1], magic angle spinning [2], and

the phenomena produced by multiple pulse methods [3].

Recently, we found another type of line narrowing

that is produced by a triple quantum (TQ) resonance in
a two-level NMR system [4]. The TQ resonance is

caused by the cooperation of the rotating and the

counter-rotating components of the oscillating field as

illustrated in Fig. 1. The TQ resonance induced by the

oscillating field at a particular frequency and a partic-

ular intensity produces a TQ transient nutation of an

extraordinary long decay time. The theory that we have
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developed to explain the narrowing effect shows that the

long decay time is explained by the disappearance of
the secular part and the very small nonsecular parts of

the magnetic dipole Hamiltonian [4]. This type of nar-

rowing is not a straightforward TQ analog of the usual

magic angle narrowing [1].

The theory also shows that the TQ nutation signal is

accompanied by some higher frequency oscillations.

However, the higher frequency oscillations were not

observed in a previous work [4], and also, no observa-
tion of such higher frequency oscillations has so far been

reported, to our knowledge. The present paper is the

first and detailed report on the theoretical and experi-

mental investigations of the higher frequency oscilla-

tions. We succeeded in the observation of the higher

frequency oscillations by improving the detection

system.

The situation that we consider is the TQ resonance of
a like nuclear spin 1/2 system which is spin-locked [5,6]

by an RF field at exact resonance. The TQ resonance is
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Fig. 1. Energy level diagram of I ¼ 1=2 spin system illustrating the

mechanism of the TQ resonance. The TQ resonance is induced by three

circularly polarized photons of the energy x2 (in frequency units)

which is nearly equal to one-third of the level spacing x1. Each of the

two photons corresponds to the normal rotating component of the

oscillating field and the other to the counter-rotating component, in

this case. D indicates the amount of the resultant level shift, which is

obtained from Eq. (17). The right arrow means a single quantum

transition by a circularly polarized photon of x1.
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caused in the rotating frame by the oscillating field in-

duced perpendicular to the RF field by the sinusoidal

modulation of the RF phase. Under the usual experi-

mental condition, the frequency of the oscillating field is

in the range of low frequencies (LF), and therefore, we

refer to the oscillating field as an LF field. Since the

intensity of the LF field is not so small compared with
that of the RF field, the rotating wave approximation is

invalid for the LF field; in other words, the counter-

rotating component of the LF field becomes effective.

We developed the theory of the TQ resonance with

transformations of the density matrix equation of mo-

tion to a multiple-rotating frame, which enables us to

pictorially understand the spin behaviors in the presence

of the LF field. The higher frequency oscillations are
interpreted as a result of the fluctuation of the angle

between the transverse or effective field causing the TQ

nutation and the RF field. Although many theories on

the multiple quantum resonance in the two-level system

have so far been developed using various approaches [7–

9], there are few theoretical developments with several

successive transformations to rotating reference frames,

to our knowledge. Boscaino et al. [10] used such a kind
of transformation method to explain double quantum

nutation phenomena. However, our theory is not an

extension of theirs because the mechanism of the TQ

resonance is different from that of the double quantum

resonance, which requires an oscillating field parallel to

the predominant static field.

In Section 2, we explain the theoretical approach of

the TQ resonance in detail. We obtain the result that the
modulation index of the phase modulation (PM) of the
RF field is the key parameter that essentially controls
the TQ resonance condition and the narrowing condi-

tion. In Section 3, the experimental method for the

verification of the theoretical approach is described. We

use two kinds of methods for settling down of the RF

phase after the PM; the one, which is an improved

method, is used to verify the present theory, and the

other for measuring the decay time of the TQ nutation.

The experiments were carried out on 19F nuclei in Tef-
lon. Finally, we present the experimental verifications

with some discussions and some comments on the con-

tribution of the magnetic dipole interaction to the TQ

nutation decay in Section 4.
2. Basic theory of the TQ resonance

We assume that the spin system Ið¼
P

IjÞ is spin-

locked by the RF field 2ðx1=cÞ cosðx0t � 2um sin bÞ
applied perpendicular to the static magnetic field x0=c,
where c is the gyromagnetic ratio of the nuclei and

b ¼ x2t þ u. The total Hamiltonian in the laboratory

frame is

H0ðtÞ ¼ �x0Iz � 2x1Ix cosðx0t � 2um sin bÞ þH
ð0Þ
d

ð1Þ
with

H
ð0Þ
d ¼ 1

�h

X
Djkð3IjzIkz � IjIkÞ; ð2Þ

where Djk is a geometrical factor of a well-known form
[11]. We neglect the counter-rotating component of the

RF field and the nonsecular part of the magnetic dipolar

Hamiltonian as usual under the condition that the static

field x0=c is much larger than 2x1=c and the local field.

To make the normal rotating component of the RF field

time-independent, we transform the Hamiltonian H0 (t)
to that in the phase-modulated rotating frame using the

unitary operator

U0 ¼ expf�iðx0t � 2um sin bÞIzg; ð3Þ
and obtain

H1ðtÞ ¼ �x1Ix � 2umx2Iz cos bþH
ð1Þ
d ; ð4Þ

where

H
ðnÞ
d ¼ Un�1H

ðn�1Þ
d U�1

n�1; n ¼ 1; 2; . . . ð5Þ
The PM produces the LF field of the intensity 2umx2=c
at x2 perpendicular to the static field x1=c in this ro-

tating frame. Next, we tilt the rotating frame using the

operator U1 ¼ expðip
2
IyÞ and obtain the Hamiltonian in

the tilted and phase-modulated rotating frame as

H2ðtÞ ¼ �x1Iz þ 2umx2Ix cos bþH
ð2Þ
d : ð6Þ

We refer to the tilted and phase-modulated rotating

frame as an original rotating frame. The spin-locked
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magnetization is along the z-axis in the original rotating
frame.

Starting from the HamiltonianH2ðtÞ, we perform the

following series of unitary transformations of the total

Hamiltonians. The first transformation is made using

U2 ¼ expðibIzÞ to take into account the counter-rotating

component of the LF field. The obtained Hamiltonian is

H3ðtÞ ¼ �ðx1 þ x2ÞIz þ umx2Ix

þ umx2e
2ibIz Ixe�2ibIz þH

ð3Þ
d ; ð7Þ

which is the Hamiltonian in the first rotating frame with

respect to the original rotating frame. The first rotating

frame rotates at �x2, i.e., at x2 in the reverse sense to

the nuclear precession around the spin-locking field

x1=c, in which the effective field xe=c at an angle h to the
field x1=c exists together with the transverse field of the

intensity umx2=c rotating at 2x2, where

xe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 þ x2Þ2 þ ðumx2Þ2

q
; ð8Þ

and

tan h ¼ umx2

x1 þ x2

: ð9Þ

We tilt the first rotating frame using U3 ¼ expð�ihIyÞ
and obtain

H4ðtÞ ¼ �xeIz þ umx2 cos hIx cos 2b� umx2Iy sin 2b

� umx2 sin hIz cos 2bþH
ð4Þ
d : ð10Þ

If 2x2 ffi xe, the oscillating transverse fields (in the

second and the third terms) cause a resonance in the first

rotating frame, which corresponds to the single quan-

tum (SQ) resonance [12] with the Bloch–Siegert shift

[13]. However, the angular frequency 2x2 is sufficiently

small compared with xe in this case.
We continue the transformation with the operator

U4 ¼ expð�2ibIzÞ, which transforms H4ðtÞ to that in the

second rotating frame rotating at 2x2 in the same sense

to the nuclear precession around the effective field xe=c.
The transformed Hamiltonian is

H5ðtÞ ¼ �ðxe � 2x2ÞIz þ 1
2
umx2ð1þ cos hÞIx

� 1
2
umx2ð1� cos hÞe�4ibIz Ixe4ibIz

� umx2 sin hIz cos 2bþH
ð5Þ
d ; ð11Þ

which indicates that, in the second rotating frame, there

exists the second effective field x�
e=c at an angle a to

the effective field xe=c accompanied by the rotating and

the oscillating fields, where x�
e and a are, respectively, gi-

ven by

x�
e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxe � 2x2Þ2 þ 1

2
umx2ð1þ cos hÞ

� �2q
ð12Þ

and

tan a ¼
1
2
umx2ð1þ cos hÞ

xe � 2x2

: ð13Þ
The Hamiltonian H5ðtÞ is furthermore transformed by
the operator U5 ¼ expð�iaIyÞ to
H6ðtÞ ¼ �x�

eIz � 2x3Ix cos 2b� umx2 sin h cos aIz cos 2b

þ 1
2
umx2ð1� cos hÞ sin aIz cos 4b

� 1
2
umx2ð1� cos hÞ cos ae�4ibIz Ixe4ibIz

� 1
2
umx2ð1� cos hÞð1� cos aÞIy sin 4bþH

ð6Þ
d ;

ð14Þ

where

x3 ¼ 1
2
umx2 sin h sin a: ð15Þ

We now make some approximations as follows under
the condition that the angles h and a are small. Since the

static term �x�
eIz is regarded as an unperturbed Ham-

iltonian in this reference frame, the third and the fourth

terms showing the interactions of the spin system with

the oscillating fields along the static field x�
e=c can be

neglected. The fifth and the sixth terms indicate the in-

teractions with the field that rotates inversely with re-

spect to the nuclear precession around the second
effective field x�

e=c and with a very weak oscillating field,

respectively. Therefore, these time-dependent terms are

negligible even if 4x2 ffi x�
e . Thus, the most probable

resonance is produced by the second term when

2x2 ffi x�
e .

We mainly consider the case

2x2 ¼ x�
e : ð16Þ

We may call the resonance a TQ resonance because x2

satisfying Eq. (16) becomes 1
3
x1 at the limit of um ¼ 0.

Hereafter, x2 satisfying Eq. (16) is denoted by x20. The
explicit expression of x20 is complicated. The ratio

x1=x20 is obtained approximately from Eq. (16), using a

mathematical computer program ‘‘maple 7,’’ as

x1

x20

¼ 3� 3

8
u2

m � 9

512
u4

m: ð17Þ

The second and the third terms in Eq. (17) present the
shift of x20 from x1=3 (corresponds to D=3 in Fig. 1).

Eq. (17) is consistent with theoretical results derived by

Ahmad and Bullough [8] and Swain [9].

The effects of the TQ resonance are described with the

following static Hamiltonian in the third reference frame

rotating at 2x20 around the second effective field x�
e=c,

H7 ¼ �x3Ix þ �HH
ð7Þ
d ð18Þ

which is obtained by transforming with U6 ¼
expð�2ibIzÞ, where �HH

ð7Þ
d is the time-independent part of

H
ð7Þ
d . We neglect the counter-rotating component of the

resonant oscillating field in the second term in Eq. (14)

and the oscillating terms of H
ð7Þ
d . The third rotating

frame rotates triply with respect to the original rotating

frame as illustrated in Fig. 2. We here consider the an-
gles nx, ny , and nz that the x-, the y-, and the z-axes of the
triply rotating frame make with the field x1=c, where the



Fig. 2. Schematic illustration of the triply rotating frame. The first

effective field xe=c at an angle h to the RF field along the z1 axis rotates
at an angular frequencyof –x20 around the RF field in the original

rotating frame. The second effective field x�
e=c at an angle a to the field

xe=c rotates at 2x20 around xe=c, and the transverse field x3=c causing
the TQ nutation rotates at 2x20 around x�

e=c. The notations nx, ny , and
nz mean the angles that the x3, y3, and z3 axes of the triply rotating

frame make with the RF field.
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x- and the z-axes are taken along the transverse field

x3=c and the second effective field x�
e=c, respectively.

(These axes are denoted by x3, y3, and z3 in Fig. 2.) The

field x1=c is parallel to the z-axis of the original rotating
frame (denoted by z1). Since the angle nx is not so dif-

ferent from p=2 for the small values of h and a, the

nutation of the magnetization initially along the field

x1=c can be sufficiently caused around the transverse
field x3=c (the TQ nutation) and observed through the

oscillation of the component Mz of the magnetization

along the field x1=c in the original rotating frame, if the

field x3=c is large enough compared with the local field

due to �HH
ð7Þ
d .

However, the time development of MzðtÞ includes

higher frequency oscillations because the angles nr �s
ðr ¼ x; y; zÞ depend on time as seen from Fig. 2. The angle
nz fluctuates at a frequency of 2x20 owing to the rotation

of the second effective field x�
e=c, where the rotation of

the first effective field xe=c does not affect on the fluc-

tuation of nz because it rotates at a constant angle h
around the z1-axis. Therefore, the angle nx fluctuates by
virtue of the fluctuation of nz and the rotation of the field

x3=c at 2x20 around x�
e=c, as a result,MzðtÞ oscillating at

x3 fluctuates with frequencies 2x20 and 4x20.
The time development of MzðtÞ is calculated with

MzðtÞ ¼ TrfIzV ðtÞ�1
e�iH7tV ð0Þqð0ÞV ð0Þ�1

eiH7tV ðtÞg;
ð19Þ

where V ðtÞ ¼ U6U5U4U3U2, and

qð0Þ ¼ 1þ IzMzð0Þ=TrðI2z Þ ð20Þ
which is the initial density matrix of the spin system in
the original rotating frame under the high temperature

approximation. In the calculation of MzðtÞ, we replace
�HH
ð7Þ
d by its secular part Hy

d as usual, which is the static

part of e�ix3Ixt �HH
ð7Þ
d eix3Ixt. Although the explicit expres-

sion of MzðtÞ is complicated, we can express it in a

compact form as

MzðtÞ ¼ Mzð0Þ cos nxð0Þ cos nxðtÞ
þMzð0Þj sin nxð0ÞjCðtÞ½cos nzðtÞ cosðx3t þ wÞ
þ cos nyðtÞ sinðx3t þ wÞ�; ð21Þ

using the relation,

V ðtÞIzV ðtÞ�1 ¼ cos nxðtÞIx þ cos nyðtÞIy þ cos nzðtÞIz;
ð22Þ

where,

CðtÞ ¼ Trfe�iH
y
d
tIzeiH

y
d
tIzg=TrðI2z Þ;

tanw ¼ cos nyð0Þ= cos nzð0Þ: ð23Þ

The validity of Eq. (22) is understood by noting that Ir�s
(r ¼ x; y; z) in the right-hand side of Eq. (22) are the spin

operators in the triply rotating frame, whereas Iz be-

tween the operators V and V �1 in the left-hand side is in

the original rotating frame.

The first term in Eq. (21) shows the behavior of the

component of the magnetization Mzð0Þ cos nxð0Þ along

the transverse field x3=c (the TQ spin-locked magneti-

zation) and the second one that of the component per-
pendicular to x3=c ½Mzð0Þj sin nxð0Þj�. The values of

cos nrð0Þ�s (r ¼ x; y; z) obtained from Eq. (22) depend on

h, a, and u. The angles h and a depend on um and

x1=x20 as seen from Eqs. (9) and (13), and the reso-

nance condition (16) presents the relation between um

and x1=x20 [see Eq. (17)]. Therefore, the angles h and a
at the exact resonance depend only on um and the values

of cos nrð0Þ�s are determined only by um and u. Rear-
ranging the right-hand side of Eq. (21) with the explicit

expressions of cos nrðtÞ�s, we can see that the time de-

velopment of MzðtÞ consists of seven simple harmonic

oscillations and a static term. An example of the theo-

retical time development of MzðtÞ is shown in Fig. 3,

which is obtained at u ¼ 0. The leftmost line of the

Fourier spectrum in the lower figure corresponds to the

TQ nutation and the other ones to the higher frequency
oscillations. The oscillations corresponding to the left-

most line (at x3) and four weak lines (at 2x20 � x3 and

4x20 � x3) come from the second term of Eq. (21),

and therefore, decay according to CðtÞ. On the other

hand, the oscillations corresponding to the strong lines

at 2x20 and 4x20 originate in the first term of Eq. (21),

which do not show the decay due to CðtÞ. Although the

oscillation signal in Fig. 3 is at the exact resonance,
MzðtÞ includes a small static magnitude due to the static

term in the first term of Eq. (21).



Fig. 3. Theoretical time development of MzðtÞ produced during the PM

and its Fourier spectrum. The time development is obtained under the

condition that x1=2p ¼ 65 kHz, x20=2p ¼ 25:41 kHz, um ¼ 1:057 rad,

and u ¼ 0, using the exponential decay function with T ¼ 1:1ms. The

leftmost line in the lower figure corresponds to the TQ nutation

frequency x3=2p ¼ 1:98 kHz. Three lines around 50 kHz are at the

frequencies of 2x20 and 2x20 � x3, and those around 100kHz at 4x20

and 4x20 � x3.

ig. 4. Operation for the experiments on the TQ resonance. The top

race illustrates the standard pulse sequence for the spin locking fol-

wed by the p=2 pulse with the same phase as the second pulse. The

st pulse is applied to detect a kind of solid echo signal. The defo-

using part of the echo signal is adopted as the magnitude of Mz. The

eparation between the second and the last pulses corresponds to the

ead time of the receiver amplifier (about 15 ls). The middle and

he bottom traces indicate the PMs of the RF field. The PM(I) and the

M(II) are used for the verification of the theory and the measure-

ents of the decay times of the TQ nutation, respectively.
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We next comment on the dipole Hamiltonian �HH
ð7Þ
d .

The calculation of �HH
ð7Þ
d with the well-known tensor

operators T2qðq ¼ �2 � 2Þ [3] leads to the result

�HH
ð7Þ
d ¼

X
Djk½Að3IjzIkz � IjIkÞ þ BðIjxIkx � IjyIkyÞ

þ CðIjxIkz þ IjzIkxÞ�; ð24Þ

with

A ¼ � 1
32
ð1þ 3 cos 2hÞð1þ 3 cos 2aÞ

þ 3
16
ðsin 2hþ 2 sin hÞ sin 2a;

B ¼ � 3
32
ð1� cos 2hÞð1� cos aÞ2

� 3
32
ðsin 2h� 2 sin hÞðsin 2a� 2 sin aÞ; ð25Þ

C ¼ þ 9
32
ð1� cos 2hÞ sin 2a

� 3
32
ð1þ cos hÞ2ðsin 2a� 2 sin aÞ

� 3
8
sin 2hðcos 2a� cos aÞ:

The secular part Hy
d of �HH

ð7Þ
d and the nonsecular part

Hz
d � �HH

ð7Þ
d �Hy

d are given by

Hy
d ¼ 1

2
ðB� AÞ

X
Djkð3IjxIkx � IjIkÞ; ð26Þ

and

Hz
d ¼

X
Djk½�1

2
ð3AþBÞðIjyIky � IjzIkzÞ

þCðIjxIkz þ IjzIkxÞ�: ð27Þ

The coefficient ðB� AÞ=2 is equivalent to K in a previous

work [4]. The coefficients A, B, and C are also deter-

mined only by um under the condition of exact reso-

nance. At um ffi 1:16322rad, A ¼ B, namely the secular

part vanishes, where um at which A ¼ B is denoted by

um0. The value of B is almost 0 in the range of um ¼ 0–

1.5 rad. Therefore, at um0, the value of j3Aþ Bj=2 is also
nearly equal to 0 ðffi 2:44� 10�3Þ and the nutation decay
is essentially due only to the second term of Hz

d with the

coefficient jCj ¼ 0:23079.
3. Experimental method

The experiment was performed with the RF field at

the frequency x0=2p ¼ 27MHz on 19F nuclei in Teflon
at room temperature, using home-made NMR equip-

ment. After the nuclear magnetization was aligned along

the RF field by a standard spin-locking procedure [6],

we applied the PM to the RF field using an LF oscillator

(HP 33120A) with a function of burst modulation as

illustrated in Fig. 4. The LF signal generated by the LF

oscillator was fed to the phase modulator of the RF

oscillator (ANRITSU MG443B) through the gated LF
amplifier. When the sample coil was tuned best, the

smallest amplitude modulation (AM) at the frequency

2x2 was produced in the RF field. The amplitude of the

AM was 5% or less of that of the RF field, but its effect

on the TQ resonance phenomena could be quite ne-

glected. The degree of modulation index 2um was

measured from an oscillation pattern observed by mix-

ing two RFs at the same frequency with and without the
PM through a doublebalanced mixer (DBM).

The TQ resonance phenomena were observed by

plotting the magnitude of the Mz detected after the spin-

locking pulse as a function of x2 or the duration of the

PM pulse. The spin locking pulse is followed by a p=2
pulse with the same RF phase, after which a solid echo is

induced [14]. The magnitude of Mz is measured from the

defocusing part of the solid echo signal. When we
change the duration of the PM, the delay time td of the

PM pulse and the time margin tm of the RF field after

the PM pulse are kept constant. The durations of td and
F

t

lo

la

c

s

d

t

P

m
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tm are about 300 and 500 ls, respectively, which are
sufficiently long compared with the decay time of the

conventional nutation around the RF field. We applied

the PM not only to the RF field but also to the reference

signal for the phase sensitive detection. We adopted two

kinds of methods for settling down the RF phase after

the PM pulse (see Fig. 4). In the method I [PM(I)], the

RF phase is kept constant in order to detect the solid

echo signal at the RF phase just after the PM pulse. By
this method, the time developments of MzðtÞ are ob-

served in the original rotating frame and can be com-

pared with the theoretical results. In the method II

[PM(II)], we gradually change the RF phase to zero in a

duration of about 100 ls. We used the method II for the

measurements of nutation decay times because it con-

siderably decreases the higher frequency oscillations

superposed on the nutation signal.
The intensity of the RF field was adjusted mainly so

that x1=2p ¼ 65 kHz by measuring the center frequency

of the usual rotary saturation curve [15] with a weak LF

field, where x2 was varied under the conditions of the

constant amplitude of the LF field 2umx2=c and the

constant duration of the PM pulse (ffi3ms). The reso-

nance frequency x20=2p was measured from the TQ

saturation curve observed for the relevant amplitude of
the LF field with a PM pulse of the duration of about

4ms. We used an averaging method similar to that used

in a previous work [16] to reduce the contribution of the

higher frequency oscillations to the TQ saturation curve.

In case a small fluctuation appeared on the saturation

curve due to the higher frequency oscillations and the

tail of the transient nutation signal, we removed it with a

computer program of an FFT filter. The circles in Fig. 5
show the experimental values of x20 thus obtained for
Fig. 5. Dependences of the TQ resonance frequency x20 on um. The

circles show the experimental values of x20. The solid line is our the-

oretical result obtained with Eq. (17) for x1=2p ¼ 65 kHz. The curve is

almost the same as that obtained from Eq. (16). The broken and the

dotted lines are the theoretical results by Ahmad and Bullough and by

Swain, respectively.
x1=2p ¼ 65 kHz, which are in good agreement with the
theoretical ones (solid line) calculated with Eq. (16) or

Eq. (17).

A 300-W RF amplifier (THAMWAY A55-3602MR)

produced a strong RF field in the sample coil of 15-mm

diameter and 18-mm length. A sample whose volume

was about 1/80 of that of the sample coil was used to

reduce the effect of inhomogeneity of the RF field.
4. Experimental verifications and discussion

4.1. TQ nutation

The experimental verification of the time develop-

ment of MzðtÞ in Fig. 3 is shown by the top and middle

figures of Fig. 6. The Fourier spectrum of time devel-
opment (the middle figure) is in good agreement with

the theoretical one if the lines near x20 and 3x20 are
Fig. 6. Experimental time development of Mz (top) and its Fourier

spectrum (middle) corresponding to those in Fig. 3. The leftmost line

and the other lines in the middle figure indicate the TQ nutation

frequency (1.95 kHz) and the frequencies of the higher frequency

oscillations. The experimental condition is x1=2p ¼ 65 kHz, x20=2p ¼
25:41 kHz, u ¼ 0, and um ¼ 1:071 rad. The lines around x20 and 3x20

that are not seen in Fig. 3 are explained to be due to the oscillations of

transverse magnetization. The bottom figure shows the theoretical

Fourier spectrum corresponding to the experimental one, which is

obtained by assuming that Mz is mixed with the magnitude of 0:2Mx in

the original rotating frame at the end of the PM pulse.



Fig. 7. Experimental time development of Mz at the exact TQ reso-

nance observed with PM(II) and its Fourier spectrum. The experi-

mental condition is x1=2p ¼ 65:0 kHz, x20=2p ¼ 25:45 kHz, u ¼ 0,

and um ¼ 1:058 rad. The nutation frequency measured is 2.02 kHz.
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ignored. However, these unexpected lines are not negli-
gibly small. It cannot be considered that these lines are

due to the oscillating terms neglected in Eq. (14), be-

cause their frequencies are 2x20 or 4x20. The most

probable cause of these lines is the mixing of Mz with the

transverse component (perpendicular to Mz) in the ori-

ginal rotating frame. The time development of Mx, for

example, is described by the equation modified from Eq.

(21) by replacing only the time-dependent angles nrðtÞ�s
(r ¼ x; y; z) by the angles rrðtÞ�s defined by

V ðtÞIxV ðtÞ�1 ¼ cos rxðtÞIx þ cos ryðtÞIy þ cos rzðtÞIz:
ð28Þ

The angle rr t, which is the angle between the r-axis in
the triply rotating frame and the x-axis in the original

rotating frame, is under the influence of the rotation of

the first effective field xe=c. Therefore, the time devel-

opment of Mx consists of the oscillations around x20,
3x20, and 5x20. The same holds for My . However, the

transverse component should almost disappear during

the time margin tm of the RF pulse. Probably, Mz is

mixed with a part of the transverse component by a

momentary turbulence of the RF phase at the end of the

PM pulse. The bottom figure of Fig. 6 is the Fourier

spectrum of the theoretical time development of Mz

mixed with a magnitude of 0:2Mx, the pattern of which
resembles the experimental one very well.

Eq. (21) and also the corresponding equations for Mx

andMy indicate that the initial phase u affects largely the

amplitudes of the respective simple harmonic oscilla-

tions through the angle nxð0Þ. From Eq. (22), the rep-

resentative values of nxð0Þ are obtained as p=2� ðhþ aÞ
at u ¼ 0, p=2þ h at u ¼ p=4, and p=2þ ða� hÞ at

u ¼ p=2. At u ¼ 0, the value of cos nxð0Þ is the largest,
and therefore, the amplitudes of the oscillations exactly

at nx20 ðn ¼ 1–5Þ are maximum. Actually, the intensi-

ties of the center lines at 2x20, 3x20, and 4x20 in Fig. 6

were larger than those observed for any other degree of

u. (We could not confirm such u dependences for the

lines at x20 and 5x20 because of their weak intensities.)

As expected from the representative values of nxð0Þ,
nxð0Þ becomes p=2 at a value of u between 0 and p=4.
The disappearances of the higher frequency oscillations

exactly at nx20 ðn ¼ 1–4Þ, indicating that nxð0Þ ¼ p=2,
were observed at about u ¼ p=6 for um ¼ 1:07 rad. The
other characteristics of the higher frequency oscillations

were also experimentally confirmed. For example, when

the lines exactly at nx20 ðn ¼ 1–4Þ became strong, the

other ones, including that at x3, became weak.

The u dependence of nxð0Þ enables us to reduce the
higher frequency oscillations by averaging the several

magnitudes of MzðtÞ obtained at different values of u
[16]. However, any averaging method with the phase

change cannot completely eliminate them because the

time development of MzðtÞ includes the components of

the oscillations independent of u as is recognized by a
more detailed analysis of Eq. (21). When we pay atten-
tion to the TQ nutation itself, it is convenient to use the

PM(II). The upper figure of Fig. 7 shows an example of

the TQ nutation signal observed by the PM(II). We

cannot show how the PM(II) considerably decreases the

higher frequency oscillations, but can infer that the

component of the magnetization along the second ef-

fective field x�
e=c changes into that along the RF field

fairly smoothly owing to the tail of the PM pulse.
When the frequency x2 slightly shifts from x20, the

Hamiltonian H7 is modified as

H7 ¼ �dIz � x3Ix þ �HH
ð7Þ
d ; ð29Þ

with d ¼ x�
e � 2x2. In this case, the TQ nutation is

caused around the effective field

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ x2

3

q
=c at an angle

g with the transverse field x3=c (tan g ¼ d=x3). If the

frequency x2 varies under the condition of the constant

amplitude of the LF field, d is approximately given by
1
2
ðx1=x20 þ 3Þðx20 � x2Þ, which is roughly three times as

large as the difference x20 � x2. The time development

of MzðtÞ produced under the Hamiltonian in Eq. (29) is
also described by Eq. (21) by replacing nrðr ¼ x; y; zÞ by
n#r , x3 by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ x2

3

q
, and Hy

d by the secular part of
�HH
ð7Þ#
d ¼ expð�igIyÞ �HH

ð7Þ
d expðigIyÞ, where the angles

n#r ðtÞ�s satisfy the relation

expð�igIyÞV ðtÞIzV ðtÞ�1
expðigIyÞ

¼ cos n#x ðtÞIx þ cos n#y ðtÞIy þ cos n#z ðtÞIz: ð30Þ

We here ignore the higher frequency oscillations around
x2, 3x2, and 5x2 for simplicity. The dependences of the

initial angle n#x ð0Þ on u and g indicate that n#x ð0Þ can

vary almost over the range of p rad by changing u and g.
At u ¼ 0, n#x ð0Þ ¼ p=2� a� h� g, and therefore, n#x ð0Þ
can be zero for a certain value of g. The upper figure of
Fig. 8 shows the experimental time development ofMzðtÞ



Fig. 8. Experimental time developments of Mz at TQ off-resonance.

The upper trace is the behavior of Mz observed under n#x ð0Þ ffi 0, where

the experimental condition is x1=2p ¼ 65:0 kHz, x20=2p ¼ 26:2 kHz,

x2=2p ¼ 25:4 kHz, u ¼ 0, and um ¼ 1:17 rad (at x2=2p ¼ 25:4 kHz).

The theoretically estimated values of d=2p and x3=2p are 2.01 and

2.57 kHz, respectively. The lower one is that under n#x ð0Þ ffi p=2. The
experimental condition is x1=2p ¼ 65:0 kHz, x20=2p ¼ 26:26 kHz,

x2=2p ¼ 25:80 kHz, u ¼ 55�, and um ¼ 1:15 rad (at x2=2p ¼
25:80 kHz). The estimated values of d=2p and x3=2p are 1.32 and

2.62 kHz, respectively.

Fig. 9. um dependences of the decay times T of the TQ nutations. The

circles, the triangles, and the squares show the experimental values of

T�1 measured at x1=2p ¼ 60; 65; and 70 kHz. The solid line is the

theoretical curve of jB� Aj=2. The result that the decay times T around

um ¼ um0 (ffi 1:16322 rad) are not as long as is expected from the

theoretical curve is mainly due to the influence of the dipole interaction

represented by the nonsecular part Hz
d.
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observed for n#x ð0Þ ffi 0, which indicates that almost the

whole magnetization is along the field

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ x2

3

q
=c in the

triply rotating frame, where d is comparable to x3 (see

the figure caption of Fig. 8). It is possible to measure the

relaxation time in the quadruply rotating frame by

eliminating the higher frequency oscillations with a low

pass filter, for example. The lower figure of Fig. 8 in-
dicates the experimental result obtained for n#x ð0Þ ffi p=2.
The oscillation appears to be a nutation signal at exact

resonance though it is the phenomenon at the TQ off-

resonance.

4.2. Contribution of the dipole interaction to the TQ

nutation decay

For this study, the nutation was observed by aver-

aging four magnitudes of MzðtÞ observed at u ¼ np=8
ðn ¼ 0; 1; 2; 3Þ by the PM(II), by which the higher fre-

quency oscillations were almost eliminated. We mea-

sured the decay times T for various values of um at

x1=2p ¼ 60; 65; and 70 kHz by assuming an exponential

decay (e�t=T ) as shown in Fig. 9 and confirmed that the

um dependence of T is consistent with that of the coef-
ficient jB� Aj=2 independent of x1=c, and also, with the

experimental result in Fig. 2 in [4]. The decay times T
around um0 were much longer than those of the SQ

magic angle rotary echo observed in the laboratory

frame [17] and of the SQ magic angle nutation observed

in the same original rotating frame as that of the TQ

nutation. The longer decay time of the TQ nutation is

explained by the differences in the coefficients of the
nonsecular parts of the dipole Hamiltonian [4]. The

corresponding dipole Hamiltonians in the SQ reso-

nances under the rotating wave approximation are also

of the same forms as the right-hand sides of Eqs. (24),

(26), and (27). The coefficients 1
2
j3Aþ Bj and jCj of the

nonsecular parts are 1 and
ffiffiffi
2

p
for the laboratory frame,

and 1/2 and 1=
ffiffiffi
2

p
for the rotating frame, which are

larger than the corresponding values (2:44� 10�3 and

0.23079) of the TQ resonance.

We finally consider the more general case including

TQ off-resonance with �HH
ð7Þ#
d . The Hamiltonian �HH

ð7Þ#
d is

also written in the same form as Eq. (24) with the co-

efficients A#, B#, and C# corresponding to A, B, and C in
�HH
ð7Þ
d . Therefore, the secular and the nonsecular parts of

�HH
ð7Þ#
d are given by the expressions similar to Eqs. (26)

and (27). The coefficient of the secular part is

1
2
ðB# � A#Þ ¼ 1

4
ðAþ BÞ þ 1

4
ðB� 3AÞ cos 2gþ 1

2
C sin 2g:

ð31Þ
We define the average angle �nn#x of n#x ðtÞ by
cos �nn#x �< cos n#x ðtÞ >av

¼ 1
2
sin hðcos a� 1Þ cos gþ cos h cos a sin g: ð32Þ

We assume that d < 0 at an infinitesimal value Dum of
um. Since the value of cos

�nn#x is a function only of x1=x2

and um, and the condition of A# ¼ B# gives a relation

between x1=x2 and um, the angle �nn#x is determined only

by um under the condition that A# ¼ B#, which is de-

noted by n�x . We here call the angle n�x a magic angle in

the triply rotating frame. We can easily see from Eqs.

(25), (31), and (32) that at um ¼ Dum, the coefficients B
and C are zero, and the magic angle n�x becomes equal to
the well-known magic angle cos�1ð�1=

ffiffiffi
3

p
Þ, where

sin h ffi h and sin a ffi a. As um increases, the magic angle



Fig. 10. Theoretical um dependences of n�x ; d and the coefficients of the

nonsecular parts obtained under the condition that A# ¼ B# in the case

of d < 0 at Dum. The top and the middle figures indicate that at d ¼ 0,

n�x ffi 91:6�. The solid and the dashed lines in the bottom figure are the

curves of j3A# þ B#j=2 and jC#j, respectively.
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varies as shown in the top of Fig. 10. The middle and the

bottom parts of Fig. 10 indicate that the longest decay
time of the TQ nutation is expected almost at the exact

resonance (d ¼ 0), and then, the magic angle is near p=2.
In the case of d > 0 at Dum, the magic angle becomes

cos�1ð1=
ffiffiffi
3

p
Þ at Dum. However, this kind of magic angle

is not so important for the narrowing because the value

of d=2p in this case monotonously increases as um in-

creases, and is more than 5 kHz even in the range of um

in which the coefficients of the nonsecular parts become
comparably small.
5. Concluding remarks

The present paper verifies the theory in Section 2

describing the TQ nutation and the narrowing effect in

the two-level spin system. The time development of the
spin-locked magnetization MzðtÞ indicates the TQ nuta-

tion signal accompanied by the higher frequency oscil-

lations generally consisting of the six simple harmonic

oscillations. The higher frequency oscillations owe to the

fluctuation of the angle n#x ðtÞ between the transverse

field

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ x2

3

q
=c and the RF field. The initial angle
n#x ð0Þ at u ¼ 0 can become 0 for an appropriate value of
d, and then, the whole magnetization is spin-locked by

the field

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ x2

3

q
=c in the triply rotating frame. It is

expected that the decay of the magnetization alongffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ x2

3

q
=c presents the relaxation time in the

quadruply rotating frame.

The modulation index 2um of the PM is the key pa-

rameter controlling the conditions of the TQ resonance

and the TQ nutation decay. At the exact resonance, the

value of um determines alone the angles h and a, the
ratios x1=x20 and x3=x20, and the coefficients A, B, and
C in �HH

ð7Þ
d . Therefore, the secular part of �HH

ð7Þ
d vanishes

at a particular value of um ¼ um0, which is about

1.16322 rad. The decay time measured around um0 is

much longer than those of the SQ magic angle rotary

echo observed in the laboratory frame and of the SQ

magic angle nutation observed in the same rotating

frame as that of the TQ nutation under the condition

that the rotating wave approximation is valid. The

longer decay time of the TQ nutation is explained by the
differences in the coefficients of the nonsecular parts of

the dipole Hamiltonian.

The disappearance of the secular part is also possible

at TQ off-resonance. We can define the magic angle in

the triply rotating frame with the average angle n�x at

which the secular part vanishes. At um ¼ Dum, the

magic angle n�x is equal to the well-known value

cos�1ð�1=
ffiffiffi
3

p
Þ for d < 0 at Dum or cos�1ð1=

ffiffiffi
3

p
Þ for

d > 0 at Dum. The magic angle in the case of d < 0 at

Dum is nearly equal to p=2 at the TQ exact resonance

and important for the narrowing, but the other case is

not so important.

The magic angle is in principle possible in the SQ

exact resonance under the influence of the counter-ro-

tating component. A theoretical um dependence of the

coefficient of the secular part of the relevant dipole
Hamiltonian under the SQ exact resonance shows that

the secular part disappears at um ffi 1:633 rad. However,

this is not practical because the strength of the LF field

umx2=c for this value of um becomes about 10 times as

large as that of the RF field.

The narrowing effect of the TQ nutation will be useful

if the TQ nutation signal is observed by one shot with a

multiple pulse method, for example.
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